Search results for "Radiation Damage"

showing 10 items of 38 documents

Fluence effect on ion-implanted As diffusion in relaxed SiGe

2005

A systematic study on the fluence (5 × 108 − 4 × 1014 cm−2) dependence of ion-implanted As diffusion in relaxed Si1 − xGex alloys (with x = 0.2, 0.35 and 0.5) and silicon has been performed by the modified radiotracer and secondary ion mass spectrometry techniques. With fluences above 4 × 1011 cm−2 a clear fluence-dependent enhancement in arsenic diffusion was noted for Si1 − xGex. In case of arsenic-implanted silicon such fluence dependency was not observed. This can be assigned to enhanced implantation-induced damage formation and more deficient radiation damage recovery of SiGe.

010302 applied physicsMaterials scienceSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFluenceIonSecondary ion mass spectrometrychemistry0103 physical sciencesRadiation damageDiffusion (business)0210 nano-technologyArsenicEurophysics Letters
researchProduct

Stabilization of primary mobile radiation defects in MgF2 crystals

2016

Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceExcitonRelaxation (NMR)Quantum yieldIonic bonding02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectMolecular physicsOrders of magnitude (time)0103 physical sciencesRadiation damage0210 nano-technologyInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Thermal annealing of radiation damage produced by swift 132Xe ions in MgO single crystals

2020

Abstract The annealing kinetics of the electron-type F+ and F color centers in highly pure MgO single crystals irradiated by 0.23-GeV 132Xe ions with fluences covering three orders of magnitude (Φ = 5 × 1011 –3.3 × 1014 ions/cm2) are studied experimentally via dependence of the optical absorption on preheating temperature. The annealing data are analyzed in terms of the diffusion-controlled bimolecular reactions between F-type centers and complementary interstitial oxygen ions. The behavior of the main kinetic parameters – the migration energies and pre-exponential factors – for different irradiation fluences is discussed and compared with that for other wide-gap binary materials from previ…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and DetectorsMagnesiumAnnealing (metallurgy)KineticsAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyKinetic energy01 natural sciencesIonchemistry0103 physical sciencesOxygen ionsRadiation damageIrradiation0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The peculiarities of the radiation damage accumulation kinetics in the case of defect complex formation

2020

Abstract The kinetics of radiation defect accumulation under irradiation by heavy particles is theoretically analysed under the assumption of defect complex genesis, particularly, the ones of anion and cation vacancies. The obtained analytical mathematical model and revealed peculiarities of radiation dose dependencies can be used for analysis of the experimental results for different crystalline materials for solid-state electronics and photonics.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industryComplex formationRadiation doseKinetics02 engineering and technologyRadiation021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesIon0103 physical sciencesRadiation damageIrradiationPhotonics0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Effects of natural radiation damage on back-scattered electron images of single crystals of minerals

2006

Generally, it has been assumed that signal intensity variations in back-scattered electron (BSE) images of minerals are mainly controlled by chemical heterogeneity. This is especially true for images of single crystals, where effects of different crystal orientations with respect to the incident beam on the observed BSE are excluded. In contrast, we show that local variations of the structural state within single-crystals (i.e., degree of lattice order or lattice imperfectness) may also have dramatic effects on the back-scattering of electrons. As an example, we present BSE images of single-crystals of natural zircon, ZrSiO 4 , whose intensity patterns are predominantly controlled by struct…

010504 meteorology & atmospheric sciencesCondensed matter physicsChemistryMineralogyElectron010502 geochemistry & geophysics01 natural sciencesStructural heterogeneityCrystalGeophysicsGeochemistry and PetrologyRadiation damageIncident beamSignal intensity0105 earth and related environmental sciencesZirconChemical heterogeneityAmerican Mineralogist
researchProduct

Long-term stability of alpha particle damage in natural zircon

2005

Abstract We report the first discovery of radiation damage haloes generated by alpha particles in zircon. Proterozoic zircon crystals from a potassium-rich leucogranite from the Adirondack Mountains, New York State, have interior regions that are generally low in actinide elements (UO 2  + ThO 2  ≤ 0.02 wt.%) but show a remarkable pattern of heterogeneous metamictisation. The degree of radiation damage in these regions is not uniformly low, as would be expected if it corresponded to the observed actinide distribution patterns and age of the crystals. Rather, radiation damage is significantly increased in the outermost micro-areas of the low-actinide regions. The additional radiation damage …

010504 meteorology & atmospheric sciencesMineralogyGeologyAlpha particleengineering.material010502 geochemistry & geophysics01 natural sciencesCrystallographic defectMolecular physicsLeucograniteMetamictizationGeochemistry and PetrologyRadiation damageengineeringFrenkel defectBiotiteGeology0105 earth and related environmental sciencesZirconChemical Geology
researchProduct

Irradiated silicon detectors for HL-LHC: Characterization and simulations

2012

283 páginas. Tesis Doctoral del Departamento de Física Atómica, Molecular y Nuclear, de la Universidad de Valencia. Fecha de lectura: 18 julio 2012.

:FÍSICA::Física de altas energías [UNESCO]UNESCO::FÍSICA::Física del estado sólido ::Semiconductores:FÍSICA::Física del estado sólido ::Semiconductores [UNESCO]High Energy Physics; ATLAS; Silicon Detectors; Radiation Damage;UNESCO::FÍSICA::Física de altas energíasHigh Energy PhysicsATLASDetectors and Experimental TechniquesRadiation DamageSilicon Detectors
researchProduct

Computer modelling of radiation damage in cation sublattice of corundum

1998

Results of quantum chemical computer simulations of close Frenkel defects in corundum crystals are presented and discussed. The conclusion is drawn that the energy barrier for a back recombination up to fourth nearest neighbours is less than 0.3 eV, i.e. such pairs should be unstable at temperatures above 40 K.

Condensed matter physicsChemistrychemistry.chemical_elementCorundumElectronengineering.materialCondensed Matter PhysicsCrystallographic defectQuantum chemistryElectronic Optical and Magnetic MaterialsIonCrystallographyAluminiumRadiation damageengineeringSapphire
researchProduct

A review of colour center and nanostructure creation in LiF under heavy ion irradiation

2015

A study of radiation damage in LiF crystals under irradiation with MeV–GeV energy ions, from 12C to 238U, at temperatures varying from 8 to 300 K, depending on the ion energy, energy loss and irradiation temperature, is presented. For light ions (12C, 14N) at low fluences, it is mainly color centers that are created. Increasing the fluence leads to the overlapping of tracks and the creation of more complex color centers, defect aggregates and dislocations. For ions with an energy loss above a threshold value (dE/dx = 10 keV nm−1) the tracks exhibit a central core damage region with a radius of 1–2 nm, surrounded by an extended halo which mainly contains single color centers. In this case, i…

Core (optical fiber)Materials scienceNanostructureRadiation damageRadiusHaloIrradiationAtomic physicsCondensed Matter PhysicsFluenceMathematical PhysicsAtomic and Molecular Physics and OpticsIonPhysica Scripta
researchProduct

On the nuclear response of the helium-cooled lithium lead test blanket module in ITER

2005

Abstract The helium-cooled lithium lead (HCLL) concept has been recently selected as one of the two European reference designs foreseen for the breeding blanket of a demonstration fusion reactor. In particular, within the framework of the research and development activities on this blanket line, an HCLL test blanket module (TBM) has to be designed and manufactured to be implemented in ITER. At the Department of Nuclear Engineering (DIN) of the University of Palermo, a research campaign has been carried out to investigate the nuclear response of HCLL-TBM inside ITER by a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of HCLL-TBM has been set-up and ins…

CryostatMaterials scienceMechanical EngineeringNuclear engineeringMonte Carlo methodchemistry.chemical_elementBlanketFusion powerNuclear Energy and EngineeringchemistryTest blanket moduleHCLL-blanketNeutronicsRadiation damageNeutron sourceGeneral Materials ScienceLithiumSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural EngineeringFusion Engineering and Design
researchProduct